- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Alvarez, Michael (1)
-
Arzuaga, Emmanuel (1)
-
Bai, Bijie (1)
-
Garfinkel, Jason (1)
-
Li, Jingxi (1)
-
Liu, Tairan (1)
-
Ozcan, Aydogan (1)
-
Rivenson, Yair (1)
-
Rubinstein, Gennady (1)
-
Scumpia, Philip O. (1)
-
Sierra, Heidy (1)
-
Wang, Hongda (1)
-
Wu, Di (1)
-
Zhang, Xiaoran (1)
-
Zhang, Yijie (1)
-
de Haan, Kevin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
Brunner, Daniel (2)
-
Ozcan, Aydogan (2)
-
Volpe, Giovanni (2)
-
Pereira, Joana B (1)
-
Pereira, Joana B. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Using Monte Carlo simulated PPGs signals to train a deep learning model to predict hemoglobin levelsVolpe, Giovanni; Pereira, Joana B; Brunner, Daniel; Ozcan, Aydogan (Ed.)Measuring Hemoglobin (Hb) levels is required for the assessment of different health conditions, such as anemia, a condition where there are insufficient healthy red blood cells to carry enough oxygen to the body's tissues. Measuring Hb levels requires the extraction of a blood sample, which is then sent to a laboratory for analysis. This is an invasive procedure that may add challenges to the continuous monitoring of Hb levels. Noninvasive techniques, including imaging and photoplethysmography (PPG) signals combined with machine learning techniques, are being investigated for continuous measurements of Hb. However, the availability of real data to train the algorithms is limited to establishing a generalization and implementation of such techniques in healthcare settings. In this work, we present a computational model based on Monte Carlo simulations that can generate multispectral PPG signals that cover a broad range of Hb levels. These signals are then used to train a Deep Learning (DL) model to estimate hemoglobin levels. Through this approach, valuable insights about the relationships between PPG signals, oxygen saturation, and Hb levels are learned by the DL model. The signals were generated by propagating a source in a volume that contains the skin tissue properties and the target physiological parameters. The source consisted of plane waves using the 660 nm and 890 nm wavelengths. A range of 6 g/dL to 18 dL Hb values was used to generate 468 PPGs to train a Convolutional Neural Network (CNN). The initial results show high accuracy in detecting low levels of Hb. To the best of our knowledge, the complexity of biological interactions involved in measuring hemoglobin levels has yet to be fully modeled. The presented model offers an alternative approach to studying the effects of changes in Hb levels on the PPGs signal morphology and its interaction with other physiological parameters that are present in the optical path of the measured signals.more » « less
-
Li, Jingxi; Garfinkel, Jason; Zhang, Xiaoran; Wu, Di; Zhang, Yijie; de Haan, Kevin; Wang, Hongda; Liu, Tairan; Bai, Bijie; Rivenson, Yair; et al (, SPIE Optics and Photonics Conference)Volpe, Giovanni; Pereira, Joana B.; Brunner, Daniel; Ozcan, Aydogan (Ed.)Reflectance confocal microscopy (RCM) can provide in vivo images of the skin with cellular-level resolution; however, RCM images are grayscale, lack nuclear features and have a low correlation with histology. We present a deep learning-based virtual staining method to perform non-invasive virtual histology of the skin based on in vivo, label-free RCM images. This virtual histology framework revealed successful inference for various skin conditions, such as basal cell carcinoma, also covering distinct skin layers, including epidermis and dermal-epidermal junction. This method can pave the way for faster and more accurate diagnosis of malignant skin neoplasms while reducing unnecessary biopsies.more » « less
An official website of the United States government
